
53 1 

Properties of the Hugoniot function 

By ROBERT D. COWAN 
Los  Alamos Scientific Laboratory of the Umversity of California, Los Alamos, New 

Mexico 

(Received 22 August 1957) 

SUMMARY 
Differentiation of the Hugoniot function 

fw v> = E(P, - E(P0, vo) + i@ +Po)(.  - vo) 

and use of the first and second laws of thermodynamics leads to 
the relation dH = T dS+  dA,  where dA is the element of area 
in the ( p ,  a )  plane swept out (in a counter-clockwise direction) by 
the line segment (p, ,  v,,) + ( p ,  v) as the point ( p ,  v) is moved from 
some point (p, ,  v,) to a neighbouring point ( p ,  + dpl, v1 + dv,). 
This relation, together with rather general assumptions regarding 
the shape of the isentropic curves dS  = 0 for the material behind 
the shock, makes possible the geometrical derivation of a number 
of properties of the function Hand of the Hugoniot curves dH = 0. 

1. INTRODUCTION 
The laws of conservation of mass, momentum, and energy lead to the 

following relation (first derived by Hugoniot (1889); see also Courant & 
Friedrichs (1948), pp. 116-146 and 204-218) which must be satisfied across 
any shock front : 

E-Eo = i ( p  +po)(ao-v), (1) 
where po,  v0, and E, are the pressure, specific volume, and specific internal 
energy of the material ahead of the shock front, and p ,  v, and E are the 
values of these quantities behind the shock front. ( E  and E,, must, of course, 
be referred to the same energy zero-for example, the energy of the elements 
in the ideal-gas state at zero temperature.) If the equation of state of the 
material behind the shock is known so that E a n d p  can be found for any 
state, then (1) defines all states which can be reached from (po ,  no, E,,) by 
means of a single shock. The locus of all such states can be represented 
as a curve in the p-v plane, known as the Hugoniot curve. 

Even without knowing the equation of state in detail, it is possible to 
derive several important qualitative properties of the Hugoniot curve on 
the basis of certain rather general equation-of-state characteristics. This 
problem has been discussed at length by Bethe (1942) and by Weyl (1949) 
for the case in which the materials behind and ahead of the shock are 
chemically identical, and by Courant & Friedrichs (1948) also in the case 
in which the shock induces a chemical reaction (as in the detonation of 
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explosives). However, though the assumed equation-of-state characteristics, 
are essentially of a geometrical nature (in terms of the p-el plane), the 
treatments of the above authors are primarily analytical. The result is 
that one does not readily obtain much of a feeling for the geometrical 
relations between the original assumptions and the final deductions. The 
treatment given below is basically geometrical, and the writer has foun-d 
it quite useful in dealing with several problems which he has encountered, 
two of which are mentioned at the end of the paper. Many of the properties 
discussed below are well known, but are included for the sake of 
completeness ; the proofs given serve to illustrate the simplicity of the 
geometrical approach. 

Two of the basic assumptions made by Courant & Friedrichs in treating 
the reaction case are rather obscure; these points are cleared up in the 
discussion following equation (2) and Property 15. 

2. ASSUMPTIONS 

It  is assumed that there is no external electromagnetic field present, 
which might affect the problem in the case of shock-induced ionization. 
The state of the material behind the shock (which may be a mixture of 
several compounds) is then described completely by the internal energy 
function E = E(S,  v,  nJ, where S is the specific entropy and n, the number 
of moles of compound i per gram of mixture. The difference in internal 
energy between two neighbouring states is 

d E =  T d S - p d v f  z , u , d n , ,  (2) 
where pa is the chemical potential of the ith component. I t  is assumed 
that any shock-induced reaction takes place rather rapidly, and we shall 
consider only those states which occur to the rear of the reaction zone, 
where the material is essentially in chemical equilibrium. The term 
2 ,u, dn, in (2) is then zero, the change in internal energy becomes simply 

dE = T d S - p  dv,  (3). 

(aPlas)tl > 0 (4) 

and the internal energy can be considered as a function of S and v only. 
Assuming further that 

so that no two isentropic curves ever cross, the energy can be considered 
as a single-valued function of pressure and volume 

E = E ( p , a ) ,  (5 1 
which will be supposed to be everywhere continuous with continuous 
derivatives. (Assumption (4) is invalid for water between 0" and 4"C, 
and for phase changes generally.) Finally, it is assumed that all isentropes 
have negative slope and positive curvature : 

( W V ) ,  < 0, (6) 

(a2p/aV'2), > 0. (7)4 
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These two conditions are satisfied rather generally ; they have been 
investigated at  some length by Bethe (1942) for substances not reacting 
chemically and shown to be valid usually except at some phase trans- 
formations?. However, (7) is occasionally violated in the case of chemically 
reacting substances. 

From (3) and (4) it follows that 

(aEpp) ,  = T(as /ap ) ,  > 0. 

( a w v ) ,  > 0, 

(aEpv), > -p. 

Since (4) and (6) imply 

it follows from (3) that 

In some cases for p > p ,  and v < vo (which will be mentioned specifically 
below), the stronger condition 

( W v ) ,  > - H P + P o )  (11 a) 

(as/av>l, > H P  -Po)/  T (11 b) 
or (from (3)) 

will be assumed to hold, and in other cases, the still stronger condition 

or 

will be applied. Even this last inequality (which, with (8), is equivalent 
to ( a p / a ~ ) ~  < 0) has been shown by Bethe to be usually valid except at 
some phase transformations. 

It is assumed throughout that p ,  > 0. 

3. DEFINITIONS 
In  order to investigate the properties of the Hugoniot curve defined 

by (l), it is convenient to define the so-called Hugoniot function 

H(P, 4 = E(P, 4 - E(P0, vo) - H P  +Po)(vo - 9, (13) 

where E(p,,v,) is the internal energy which the material behind the shock 
would have if it were returned (always under conditions of thermodynamic 
and chemical equilibrium) to the pressure and specific volume (p , ,  v,) of 
the unshocked material. By assumption (5), H i s  a single-valued, continuous, 
and differentiable function of p and v. In terms of the Hugoniot function, 
the Hugoniot relation (1) becomes 

H = E,,(po, v,) - E(p,, v,) = constant. (14) 

t The inequality examined by Bethe is actualIy 

(aPlav), = (aP/av)s+(p/T)(aP/as), < 0, 
which is less general than (6) if (4) holds. 
(ap/aS) ,  >-2T/v is more general than (4).) 

(However, Bethe’s third assumption 
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Thus the Hugoniot curve is a curve of constant H, the constant value being 
zero if the shock induces no chemical reaction (or a reaction such as 
dissociation or ionization for which the shocked material can be returned 
reversibly and spontaneously to the original state of the unshocked material), 
and the constant being greater or less than zero if a reaction is induced 
which is exothermic or endothermic, respectively. (Note that if the 
unshocked material is, for example, a complicated organic high explosive 
in a condensed phase, it may be impossible to reduce top, the pressure of 
the reaction products at volume v, even by reducing the temperature to 
absolute zero, so that E(p,,v,) is undefined. In this case, the zero- 
temperature isotherm passes above the point (po,vo),  and H(p,w) must be 
defined in terms of say E( T=O, v,) or E(T=O, p=O) instead of E(p,, vo). 
However, this only changes the value of the constant in (14), and requires 
no essential revision in the discussion below for Hugoniot curves 
H = constant > 0. It is convenient to suppose that E(po,vo) does exist 
so as to permit simultaneous treatment of the cases H = constant 2 0.) 

The differential of the Hugoniot function (13) is, on using (3), 

This is the expression used by Weyl (1949) in his analytical discussion of 
the problem. However, it is much more convenient for a geometrical 
treatment to write (15) in the form (Cowan 1953) 

d H  = T d S + d A ,  (16) 

where d A  is the area swept out in the p-v plane by the radius vector 
(p , ,  v,) --f ( p ,  v) in moving from the point ( p ,  v) to the point ( p  + dp, v + dv),  
d A  being positive if the radius vector moves in a counter-clockwise direction. 
That the final term in (15) is the element of area just defined can be seen 
by noting that this term is just half the alternating (two-dimensional vector) 
product of the vectors (v-vo,p-po)  and (dv,dp),  or alternatively by 
introducing polar coordinates 

v-v,  = rcos9, p - p ,  = rsintl 

which show that this term is 

&r2 dB = dA.  

It may be pointed out that although d H  is a perfect differential, neither 
TdS nor d A  is one. Equation (16) is in fact quite similar to (3), bothpdu 
and d A  being elements of area in the p-v plane-the one in Cartesian, the 
other in polar coordinates. 

It will be convenient in the discussion below to speak in terms of a 
coordinate system with origin at (p, ,  v,) and so we introduce the coordinates 
p' = p -p0, v* = 2'- 0,. The isentropic curve which passes through the 
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origin will be denoted by So, and the tangent line to So at the origin will 
be called Ts0. For each isentrope S lying above So, then, as a consequence 
of assumptions (6 )  and (7), there exist exactly one point on S in the second 
quadrant and one point on S in the fourth quadrant at which a straight line 
through the origin is tangent to S. The locus of all such points of tangency 
will be denoted by LT, and can be seen to be a continuous curve which is, 
tangent to So at the origin, but otherwise lies entirely above So (figure 1). 
Because of assumptions (4) and (7), any straight line through the origin 
cuts LT in at most one point, and it is evident from the definition that 
entropy increases monotonically in travelling along L T outward from the 
origin in either direction. 

Figure 1. The isentrope So, the tangent to So at the origin Ts,, and the locus LT' 
of all points at which a ray through the origin is tangent to an isentrope. 

The curves LT, So, and Tso each pass through the origin but are otherwise 
confined to the second and fourth quadrants. The portions of these curves 
lying in the second and fourth quadrants will be denoted by the superscripts. 
(2) and (4), respectively. 

It should, of course, be kept in mind that the region of the (p*, v*)-plane 
in which H is defined is bounded from below by the zero-temperature 
isotherm. This (along with any regions in which the assumptions (3) to (7) 
are invalid) may introduce certain limitations on the validity of some of the 
statements made below. 
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4. PROPERTIES OF THE HUGONIOT FUNCTION 

,General properties of H(p*, v") 
PROPERTY 1. H(0,O) = 0, by definition. 

PROPERTY 2. Forp+ < 0, ( a H / a ~ ) ) ~  > 0;  for v* > 0, (aH/ap), > 0,- 
Travelling to the right along an isobar p" < 0 or upward along an 

isochor v+ > 0, both dS and d A  are positive, and hence dH > 0 
from (16). 

PROPERTY 2'. Wherever condition (11) is satisfied, ( a H / a ~ ) ) ~  > 0 even 

This follows immediately from (15). 
thoughp' > 0. 

I p* 

Figure 2. On any straight line through the origin, H increases away from the origin 
on the first-quadrant side of LT and increases toward the origin on the third- 
quadrant side of LT (Property 3). 

PROPERTY 3. On any ray through the origin travelling away from the 
origin, dH > 0 on the first-quadrant side of LT and dH < 0 on the third- 
quadrant side of LT (figure 2). Thus H passes through a maximum 
at LT. 

On such a ray, d A  = 0, and hence from (16), d H  = T d S .  The qualitative 
behaviour of H is thus identical to that of S and follows immediately from 
the definition of LT. 
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PROPERTY 4. Travelling along an isentrope in the direction of increasing 
pressure, dH > 0 on the first-quadrant side of LT and dH < 0 on the 
third-quadrant side of LT (figure 3) .  Thus H passes through a minimum 
at LT(4) and through a maximum at LT(2). 

Along an isentrope, d S  = 0, and hence dH = dA. 

P* 

Figure 3. On an isentrope, H increases in the direction of increasing pressure on the 
first-quadrant side of LT and increases in the direction of decreasing pressure 
on the third-quadrant side of LT (Property 4). 

PROPERTY 5. Except for the origin, H > 0 on LT and on Sp) and 
H < 0 on Sh2) and Ts,. Travelling away from the origin, dH > 0 on LT(4) 
and Sg) and dH < 0 on Sh2), T,&:) and Tg).  

The statements regarding LT(2) and Ts0 follow from Properties 1 and 3, 
and those regarding So from Properties 1 and 4. Travelling away from 
the origin on LTC4), both d S  and d A  are positive and hence dH > 0. 
Note, however, that a similar statement cannot be made on LT@) since dS  
and d A  have opposite signs; H > 0 on LT@), but does not necessarily 
increase monotonically in a direction away from the origin-see the 
discussion following Property 15. 

Properties of the curve H = 0 
In  the case of a shock which includes no chemical reaction (in the sense 

described in 5 3), the possible thermodynamic states behind the shock are 
those for which H = 0 ;  such states are thus of considerable physical 
interest, 

F.M. 2M 
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PROPERTY 6. There exists a continuous curve H = 0 (denoted by H, 
for brevity) which passes through the origin 0, but is otherwise confined 
to the second quadrant between L T o  and Sg) and to the fourth quadrant 
between Sh4) and Tg).  For any point P on Sf', the ray 0 --f P cuts H, in 
exactly one point; for P on SA4), 0 --f P cuts H, in at most one point and 
a vertical or a horizontal line through P cuts H, in exactly one point. ~~ 

It is evident from Properties 3 and 5 that H > 0 on the first-quadrant 
side of LT(2) and Sh4), and H < 0 on the third-quadrant side of SA2) and 
TX). Thus any points for which H = 0 must lie in the portions of the 
second and fourth quadrants stated above. For any point P on Sg), the 
ray 0 -+ P cuts LT@) in exactly one point Q; since the values of H at P 
and Q are less than and greater than zero, respectively (Property 5), and 
since H increases monotonically from P to Q (Property 3), the line segment 
P --f Q contains exactly one point at which H = 0. Similarly, for any 
point P on SA4) (where H > 0), a vertical or a horizontal line through P 
intersects Tso at a point Q (where H < O)?, and by Property 2 there exists 
exactly one point between P and Q at which H = 0. Continuity of the 
curve H ,  follows from that of the curve So and that of the function (13). 
For P on Sh4), 0 +- P cuts Ho in at most one point by Property 3. 

Note that there is nothing which precludes the possibility of maxima 
and minima in volume along H f ) ;  Bethe has, in fact, discussed phenomena 
(molecular rotation, vibration, dissociation, ionization) which tend to 
produce just such effects. The question of pressure maxima and minima 
on H f )  is dealt with in Property 10 belowf. 

PROPERTY 7. H > 0 on the first-quadrant side of the curve H,, and 

This is evident from the statements made in proving Property 6. 
H < 0 on the third-quadrant side of H,. 

PROPERTY 8. As a point P moves along H, in the direction from fourth 
to second quadrant, the straight line through 0 and P turns continuously 
clockwise with no stationary values of its slope. 

In  the vicinity of the origin, H, has positive curvature. On the second- 
quadrant side of the origin, this follows from Property 6 and assumption (7) ; 
on the fourth-quadrant side, H, cannot have negative curvature because 
of Property 6, and it cannot have zero curvature because to the second 
order dS (and hence also dH)  is negative going down TX). Thus Property 8 
holds in the vicinity of the origin. Since the line 0 --f P cannot cut Ho 
in two different points (Property 6), the direction of rotation of 0 --z P 

-f If Q lies below the zero-temperature isotherm (isentrope), then the line through 
P must be terminated at the S = 0 curve, where H may or may not be negative 
(Property 4). This indicates the likelihood of an upper limit to volume on Ho.  
Such a limit indeed exists (as pointed out by Bethe) since the final term in (13) tends 
to plus infinity with v whereas E(p, v) certainly has a finite lower bound. 

3 Bethe states that pressure maxima and minima may occur on HL4). This 
is a result of his assumption (aplaS), > -2T/v, which is less restrictive than (4). 
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A point of inflection P at which H, is tangent can n,ever reverse itself. 
to 0 j. P is also impossible, from Properties 3 and 6. 

PROPERTY 9. Travelling along Ho in the direction from fourth to 
second quadrants, S increases monotonically ( d S  > 0) except for a 
stationary value at the origin, where A S  is of the third order in shock strength. 

T d S  = - d A  = -&r2 do. 

Since dH = 0 along H,, then, from (16) and (17), 

In  the vicinity of the origin 

and 

so that 

S(v*)-S(0) = - - 121To($)B(v*)3 = - 12T, (a2p)  av2 9 ( 4 3  (18) 

which is of the third order in v*+. It may be noted that the change of 
entropy along H, near the origin is directly related to the non-zero 
curvature of the isentrope So. (In fact, if So were a straight line, then 
along So, dS = d A  = 0 and hence dH = 0 ; thus H,, would be coincident 
with So along the entire length of the latter.) 

PROPERTY 10. In  travelling along HF) away from the origin, the pressure 
and energy vary as follows: (a )  if dv < 0, then dp > 0 and dE > 0 ;  
( 6 )  if dv > 0, then dp > 0 if and only if the inequality (11) is satisfied 
on H,, and dE > 0 if the inequality (12) is satisfied on H,. 

If dv < 0 in travelling up H(2), then Property 8 implies dp > 0, and 
from (3) 

since dS > 0 from Property 9. If dv > 0 in travelling up HAZ', then 
T d S  > 0 and - p  dv < 0 and nothing definite can be said about the 
sign of dE. However, if the inequality (11) is satisfied, then (aH/av), > 0 
from (15), and this implies dp > 0 from Property 7. If the even stronger 
condition (12) is satisfied, then dv > 0 and dp > 0 along H, imply from 
(8) and (12) that also dE > 0 along Ho. (Note that assumption (12) is 
a sufficient but not a necessary condition for dE > 0.) 

dE = TdS-pdv > 0 

Properties of a curve H = - c ( c  = constant > 0) 

Constant-H curves for H < 0 are not of great interest since such a 
curve (which will be denoted by H-) represents the locus of possible states 

t This expression can also be obtained by direct differentiation of (15) at constant 
fl to give the coefficients ( a(n)S/  au(n))y in a Taylor series expansion for S. 

2M2 



540 Robert D. Cowan 

behind a shock which has induced an endothermic chemical reaction, and 
such cases are not of much physical importance. The properties of such 
curves are similar to those of H, and will only be summarized briefly. 

PROPERTY 11. H- lies everywhere on the third-quadrant side of H,; 
H > - c  everywhere on the first-quadrant side of H- and H < --c 
everywhere on the other side (Properties 7 and 3). For p" < 0, a 
horizontal line cuts H- at most once; for TJ" > 0, a vertical line cuts H- 
at most once (Property 2). Any ray from the origin cuts H- at most once 
(Property 3). In travelling along H- in the direction from fourth to second 
quadrant, d A  < 0 and dS > 0 (see (16)). On H?, the behaviour of 
pressure and energy is as described in Property 10. 

Properties of a curve H = + c  (c = constant > 0)  

Constant-H curves for H > 0 are of great physical interest since one 
such curve (which will be denoted by H,) includes the locus of possible 
states behind a shock-induced exothermic chemical reaction (as in the 
detonation of an explosive, either gaseous, liquid, or solid) or behind such 
a reaction which is not shock-induced (slow combustions or deflagrations) ; 
see, for example, Courant & Friedrichs (1948). 

PROPERTY 12. H, lies everywhere on the first-quadrant side of H,, 
or, if H is not defined at the origin, then everywhere above the zero- 
temperature isentrope. In any case, H ,  is confined to the second, first, 
and fourth quadrants. 

If H is defined at the origin, this follows from Property 7 ; if not, then 
it follows from the physical requirement T > 0. In  addition, it can be 
shown (Courant & Friedrichs 1948) that the only physically significant 
parts of H ,  are those in the second and fourth quadrants, and so we shall 
not consider HY) in any detail. 

PROPERTY 13. Given any point P on LT, then, according as the value 
of H at P is less than, equal to, or greater than c, the ray 0 + P cuts H, 
not at all, at the one point P, or at (at most) one point on either side of P. 
Similarly, the isentrope through P cuts H ,  zero, one, or (at most) two 
times according as H(P) 2 c if P is on LT@) or according as H(P): c 
if P is on LT". 

Note the 
essential difference between these properties of H ,  and the corresponding 
properties of H ,  and H-, directly connected with the fact that only H ,  
can intersect LT at a point other than the origin (Property 5). 

These statements follow immediately from Properties 3 and 4. 

PROPERTY 14. For any point P on LT(4), there exists a continuous curve 
H, through P, which at P is tangent from below to Se) and tangent from 
above to 0-t P; (azp/av2)s > ( a z p / a ~ 2 ) H  > 0. On HY), the entropy 
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has a maximum value where it crosses LT(4) and decreases monotonically 
on either side of this point. 

The  statements regarding tangency follow directly. from Properties 4, 
3, and 2, and the continuity of the Hugoniot function (13). The  entropy 
maximum follows from the tangency relations, and the absence of any 
other stationary points in entropy is obvious since only at points on LT 
can dS and d A  be simultaneously zero (see (16)). 

The intersection of HY) and LT(4) represents the state of the reaction 
products for a Chapman-Jouguet deflagration (Courant & Friedrichs 1948). 

Figure 4. Diagram showing the mutual relation of isentrope, LT@), and curves H ,  
defined by H = constant > 0. Under the assumptions (4) to (lo), the relations 
shown at (a), (b),  (c), and (d) are possible (Property 15), but those at (e) are 
not (Property 3). Under assumption (ll), only (a )  is possible. 

PROPERTY 15. For any point P on LT"), the constant-H curve, H,, 
which passes through P may behave in any of several ways: (a) H ,  may 
be tangent from above to the isentrope through P ;  ( b )  H ,  may consist 
of the single point P; (c )  H ,  may be tangent from below to the ray 0 .+ P ;  
( d )  H ,  may have two branches, one of the form (u) and one of the form (c). 
H, cannot have a point of inflection at P, behaving as in (u) on one side 
of L T s  and as in (c )  on the other side. 

At any point P on LT, then along 0 + P (or along the isentrope 
through P )  dS = d A  = 0 and hence dH = 0 from (16); thus H ,  must be 
tangent to O +  P (and to  the isentrope Sp). However, H ,  cannot lie in 
between 0 --f P and S, because, travelling away from P on such a curve, 
dS < 0 and d A  < 0 and hence dH cannot be zero. Thus H ,  must behave 
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as shown at (a), (b),  (c), or ( d )  in figure 4. An inflection point at P is not 
possible ; see figure 4 and Property 3. 

It is evident from figure 4 (which may be viewed as a contour-map of 
a three-dimensional (v ,p ,H)  surface) that H+ has the form (a), (b), (c),  
or ( d )  according as in travelling up LT@) H increases, passes through a 
maximum, decreases, or passes through a minimum, respectively. Thus 
the necessary and sufficient condition that only the relation (a)  prevail 
is that H increase monotonically in travelling up LT@) (see the discussion 
following Property 5). Since on LT@) (ap/av)H = (dp/av), < 0, an 
equivalent condition is that (aH/ap), > 0 or (aHjav), > 0. This last 
inequality, from (15), is equivalent to (1 1). In  all the following discussion 
of the properties of H,, it will be assumed that on LT@) 

Proofs of most of the following statements have already been given or are 
obvious. 

PROPERTY 16. In  travelling along LT@) in the direction away from the 
origin, dH > 0. 

PROPERTY 17. For any point P on LT@), there exists a continuous 
curve H ,  passing through P which is tangent from above to the isentrope 
through P ((azp/dv2), > (Pp/avz)s > 0)  and which meets LT@) only at P. 
For any point P' on LT@) between 0 and P and for any point P on LT@) 
beyond P, the ray 0-t P' and the isentrope S p ,  intersect HF) not at all, 
0 --f P and S, meet HY) only at P, and 0 --f P and Sp,? each intersect 
H$? at most twice (once on either side of LT@)). 

PROPERTY 18. In  travelling along HY) away from LT@) in either 
direction, S increases monotonically with no stationary values except at 
the point of intersection P of HY) and LT@), where S is a minimum. For 
a point Q near P, the difference S(Q)-S(P) is of the second order in 
AV = v Q - v ~ .  

Similarly to the derivation of Property 9, one hast 

and 

PROPERTY 19. At the point of intersection of Hf'and LT@), the internal 
energy increases in the direction of increasing pressure. On the part of HY) 

.I- See the footnote to Property 9. 
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which lies to the left of LT@), the behaviour of pressure and energy are as 
given in Property 10 for HA2). 

The first statement follows from (3) and (6)  ; 

(aE/aP)Iz = (8EPP)S = -P(av/aP)s > 0- 
Proof of the remainder is exactly as that for Property 10. 

The intersection of W2) and LF2) represents ‘the state of the reaction 
products for a Chapman-Jouguet detonation (Courant & Friedrichs 1948). 

5. SUMMARY AND APPLICATIONS 

In  figure 5 is sketched a series of constant-H curves illustrating the 
most important properties developed above, assuming that condition (1 1) 
holds for p* > 0. These properties-subject to limitations which may 

, P* 

Figure 5. Diagram showing isentropes, the curve LT, and the general form of the 
constant-H curves assuming conditions (4) through (1 1) to be valid. (In order 
to illustrate volume minima on H(2) on the scale of this figure, the upper part 
of H($ has been drawn in such a way that the requirements of (21) are 
violated.) 

arise from the fact that the zero-temperature isotherm does not pass below 
the origin, or from phase transformations or other causes of violation of 
assumptions (4) to (10)-are briefly as follows. 

The (p*, v*)-plane can be thought of as divided into three parts by the 
half-line (zP = 0, p* < 0),  and by the curves LT(2) and LT(”, the loci of 
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all possible Chapman- Jouguet states for exothermic detonations and 
deflagrations, respectively. No constant-H curve has pressure maxima 
or minima anywhere, nor volume maxima or minima for v* > 0. No 
constant-H curve is cut by a straight line through the origin nor by an 
isentropic curve more than once in each of the three regions of the (p", v")- 
plane. The curve H = 0 passes through the origin, in the second quadrans 
lies between LT@) and Ss2), and in the fourth quadrant lies between Si4) 
and TAt). Above and to the right of any constant-H curve H = c, the value 
of H is greater than c ;  on the other side of this curve, H is less than c. 
Travelling up H = 0 in the direction from fourth to second quadrant, 
the entropy increases monotonically except for a point of inflection at the 
origin. Travelling up a curve H = constant < 0, dS > 0 everywhere. 
A curve H = constant > 0 in general crosses both LT(4) and LT@); in 
travelling up this curve, starting below LT(4), entropy increases mono- 
tonically until it reaches a maximum value at J ~ T ( ~ ) ,  then decreases 
monotonically to a minimum value at LF2), after which it again increases 
monotonically. 

Two applications of the properties developed above will be given. 
Both pertain to the curve HA2) (the case in which the shock produces no 
chemical reaction), and serve to elaborate on certain characteristics of this 
curve. 

1. The equation of state of a gas may be written in the form 

E = $v/(Y - 1). (20) 

I n  the case of a monatomic ideal gas, y.= 5/3 for all p and v ; the effect of 
excitation and ionization in a real gas is to increase E for given p and v 
and thus produce an effective value of y which is less than 513. Thus for 
a point ( p ,  v) which lies on the Hugoniot curve for the ideal gas, it is seen 
from (13) that H > 0 for the real gas. From Property 7, it follows that 
the Hugoniot curve for the real gas lies to the left of (or below) the ideal-gas 
curve. At very high pressures, the real gas is completely ionized and the 
potential energy becomes negligible relative to the kinetic energy, so that 
the equation of state of the real gas becomes identical with that of the ideal 
one and, consequently, the two Hugoniot curves also become identical ; 
the possibility of a volume minimum on the Hugionot curve of the real 
gas (due to ionization, etc., as mentioned earlier) is thus evident. 

2. For a certain problem which the author once encountered, it was 
important to know for an arbitrary point (p,, v,) on Hi2)whether the isentrope 
through this point intersected the chord (Po,  vo) 4 (p, ,  v,) or lay everywhere 
above it. It is immediately evident from Property 6 that the former is the 
case. In  fact, the point of intersection is closer to (po, vo) than to (p, ,  v,) 
as can be seen in the following way. In  figure 6, S, is the isentrope 
through (p, ,  vl) and (pz,v,) is the point on S, for which p ,  = po.  Then 
from the Hugoniot relation (1) 

El- Eo = HP -Po)(Vo - Vl) +Po(vo - vl), 
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and from (3) 

so that 
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where A, and A, are the shaded areas in figure 6. From assumption (lo), 
it follows that A, > A,. Thus it may be seen that not only does Hf) lie 
between L P )  and Si2), but tends to lie closer to the latter than to the former 
(see figure 5). 

V 
- -_ 

Figure 6. Relation of the Hugoniot chord (Po, v,) 3 ( P I ,  zil) to the isentrope through 
( p l ,  v l ) ;  the area A ,  is greater than the area A,. 
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